

熱分解GC/MS/MSを用いたマイクロプラスチック分析

関連製品:質量分析計(MS)

はじめに

近年、プラスチック製品から生じるマイクロプラスチック(MPs)が海の生態系に大きく影響を及ぼしていることから国際的に研究が行われている。一 般的にMPsとは、5 mm以下の粒子径のプラスチックを指す。特に、MPsの識別は汚染源などを理解する上で重要な情報となる。分析手法としては、 電子顕微鏡による表面構造の観察やFT-IRによる分子や官能基の確認といった様々な方法が用いられている。一方GC/MSの測定方法としては、熱 分解装置と組み合わせたGC/MSIによる測定が適しており、多量に含まれるポリマー成分はSCAN測定により確認し、微量に含まれるポリマー成分は SIM測定により確認を行うことが考えられる。しかし、SIM測定では、多量に含まれるポリマー成分や添加剤成分などからの夾雑成分の影響を受けやす くなるため、SIM測定による微量ポリマー成分の確認は困難となる。これに対し、GC/MS/MSのSRM測定であれば、選択したプリカーサーイオンとプロダクト イオンの組み合わせによる測定となるため、夾雑成分からの影響を抑えることができると共に、SIM測定よりも多くのイオンを用いた測定となるため、微量 成分の定性解析能力も向上する。今回は、熱分解GC/MS/MSを用いてMPs分析を実施したので報告する。

測定条件

測定は熱分解装置 (PY-3030D、フロンティア・ラボ製)と、ガスクロマトグラフ三連四重極質量分析計JMS-TQ4000GC UltraQuad™ TQを使用した。モデル 試料として、ポリプロピレン(PP)のプラスチック製保存容器を凍結粉砕して粉末化した試料約0.25 mgに、THFで100ppmに調製したポリスチレン(PS)溶液1 µL(100ng)を添加した。Table 1に測定条件を示す。熱分解温度は、ポリマーの熱分解測定で用いる600 ℃とし、SRMのトランジションは、PSを熱分解した際に 観測されるスチレンモノマー、ダイマー、トリマーについて設定した。

Pyrolysis condition					
Pyrolysis Temp.	600°C				
GC condition					
Column	ZB-5MSi (30 m length, 0.25 mm i.d., 0.25 μm film thickness)				
Inlet	Split/Splitless				
Inlet Temp.	300° °C				
Flow	1 mL/min, Constant flow				
Injection Mode	Split (200 :1)				
Oven Program	50 °C (1 min) \rightarrow 10 °C/min \rightarrow 300 °C (15min)				
MS condition					
Ion Source Temp.	280 °C				
Interface Temp.	300 °C				
Ionization Mode	El+, 70 eV				
Measurement Mode	SCAN/SRM				
Mass range	m/z 35-450				
SRM Transition	Styrene monomer (104→78 CE:15, 103→77 CE:15, 78→52 CE:20) Styrene dimer (208→193 CE:10, 104→78 CE:15, 130→115 CE:20) Styrene Trimer (117→91 CE:25, 207→129 CE:15, 207→91 CE:15)				
Collision Gas	N ₂ , 10%				

Table 1 Measurement condition

●多量に含まれるポリマー成分の確認

Fig.1(a)にTICCとFig.1(b)にTICCから得られた合算マススペクトルとFig.1(c)にF-Search(フロンティア・ラボ製)によるデータベース検索結果を示す。 主にポリマーの熱分解成分と推測される多数のピークがTICC上に観測された。マススペクトルを確認したところ、PPを熱分解した際に観測される14 u間 隔のフラグメントピークが確認できた。さらに、データベース検索結果からもPPを示す結果が得られた。以上のように、多量に含まれるポリマー成分は、 SCAN測定とデータベース検索により確認することができる。

日本電子株式会社

Fig. 2にモデル試料(PP+PS)及びPSから得られたスチレンモノマーとトリマーのTICCピークと観測されたマススペクトルを示す。モデル試料のTICC上に おいて、スチレンモノマーとトリマーのRT付近にピークが観測された。一方で、得られたマススペクトルは、PSを測定した際に得られるスチレンモノマーと トリマーのマススペクトルとは大きく異なっていた。モデル試料のTICC上において、スチレンモノマーとトリマーのRT付近に観測されたピークは主に夾雑 成分により構成されていることがわかる。このため、SIM測定を行った際には、夾雑成分の影響を大きく受けてしまうことが予想されるため、夾雑成分の 影響を抑えることができるSRM測定が適した測定方法となる。

● SRM測定による微量に含まれるポリマー成分の確認

Fig. 3にSRM測定によって得られたスチレンモノマー(a)、ダイマー(b)とトリマー(c)のクロマトグラムピークを示す。複数のモニターイオン且つプリ カーサーイオンとプロダクトイオンの関係から観測されたピークが目的成分由来である事が確認できる。

●スチレンモノマーを用いた半定量結果

観測されたスチレンモノマーのピーク面積値を用いて、1点検量線による定量値を算出した。Fig 4(a)にPSを測定した際に得られたスチレンモノマーの クロマトグラムピークとFig. 4(b)に検量線を示し、Table 2に定量値とその定量値から算出した回収率を示す。定量値(平均値)は126.9ppmであり、回収率 は126.9%であった。また、変動係数の値は4.8%と再現性の高い結果であった。

Fig. 4 SRM chromatograph peaks of styrene monomer (a) and calibration curve (b).

Table 2 Quantitative value and recovery percentage by styrene monomer

Compound	Quantitative value(ppm)			Avorago	Pacovony parcontago (Avo.)		CV(%)
	n = 1	n = 2	n = 3	Average	Recovery percentage (Ave.)	SIDEV	CV (70)
Styrene monomer	126	133.4	121.2	126.9	126.9	6.1	4.8

まとめ

MPsの分析には、熱分解GC/MS/MSのSCAN/SRM測定が有効な測定方法となる。多量に含まれるポリマー成分はSCAN測定とデータベース検索により 確認し、微量に含まれるポリマー成分はSRM測定で確認を行うことができる。SRM測定は、夾雑成分からの影響を抑える事ができると共に、SIM測定より も多くのイオンを用いた測定となるため、微量成分の定性解析能力が向上する。それによって、より正確な測定を行うことができる。

> Copyright © 2022 JEOL Ltd. このカタログに掲載した商品は、外国為替及び外国貿易法の安全輸出管理の規制品に該当する場合がありますので、輸出するとき、または日本国外に持ち出すときは当社までお問い合わせください。

本社・昭島製作所 〒196-8558 東京都昭島市武蔵野3−1−2 TEL:(042)543−1111(大代表) FAX:(042)546−3353 www.ieol.co.io_JS0.9001:(S0.14001)際町取得

 マーマーマーコー
 WWW.jeol.co.jp
 ISO 9001 · ISO 14001
 認証取得

 マ100-0004
 東京都千代田区大手町2丁目1番1号
 大手町野村ビル
 果務統括センター
 TEL: 03-6262-3560
 FAX: 03-6262-3577

 東京事務所
 〒100-0004
 東京都千
 〒100-0004
 東京都千
 〒100-0004
 東京都千
 〒ロンド推進本都
 TEL: 03-6262-3560
 FAX: 03-6262-3570
 EXEMPTION
 EXEMPTION
 EXEMPTION
 FAX: 03-6262-3570
 EXEMPTION
 EXEMPTION