関連装置:集束イオンビーム加工観察装置(FIB)

FIB による TEM 試料作製法 1

ピックアップ法

1.はじめに

本解説では FIB によるガラスマニピュレータ による TEM 試料作製法について紹介する。事前に 素材を TEM の試料ホルダに挿入できない場合は 切り出しの手間に多くの時間を要する。また、試 料のほとんどが失われてしまいます。そこで素材 の必要な部分のみ FIB で薄膜加工、切り離し用光 学顕微鏡に取り付けられたマニピュレータの先 端に取り付けられたガラスプローブでピックア ップしカーボンなどの支持膜上に載せるピック アップ法が現在では主流となっている。以降、ピ ックアップ法の具体的な手順について紹介する。

Fig.1 ピックアップ法の概略

ピックアップ法はあらかじめ FIB で薄膜を作 製、分離する。その後、試料を大気中に取り出 しマニピュレータ先端のガラスプローブにより 薄膜部分を取り出し、支持膜を張ったメッシュ 上に搬送する。メッシュには複数枚の試料を載 せることができる。

2. 具体的手順

FIB による TEM 試料作製法の一つとしてピック アップ法がある。ダイシング法と比較すると、事 前の予備加工を必要としない特徴をもつ。ピック アップ法の手順の概略は次の通りである。

- ① FIB による薄膜加工(分離加工する)。
- ガラスプローブの作製(ピックアップシステムマイクロフォージ、マイクロピペット作製器)。
- ③ ピックアップ (マニピュレータ)。

ピックアップシステムは

- 1) マイクロピペット作製器: PC-10 (Fig. 2-1)
- 2) マイクロフォージ:MF-900(Fig. 2-2)
- 3) マニピュレータ顕微鏡(Fig. 2-3)

より構成されている。1)、2)はガラスプローブ 作製のための機器であり、3)はFIB で加工され た薄膜の部分をピックアップするためのマニ ピュレータを備えた光学顕微鏡である。

Fig. 2-1 プローブ作製装置

ガラス棒を加熱しながら引っ張り、切断する装置 写真左:装置全体 右:ヒーター部分

Fig. 2-2

切断されたガラス棒の先端を加熱し表面積を 増やし、ガラスプローブを作る装置

```
写真左:装置全体、右:ヒーター部分
```


Fig. 2-3 ピックアップシステム

左はピックアップシステム全体、右はマニピュレ ータ部分の拡大

(1)薄膜加工

FIBにより試料の目的位置をあらかじめ薄膜加 工しておく。ピックアップ法による TEM 試料作製 の場合、ダイシングなどの事前加工の必要は無い が、薄膜部分をガラスプローブによりピックアッ プするため、薄膜部分を母体よりあらかじめ分離 しておく必要がある。次に示す方法でピックアッ プのための試料薄膜加工を行う。

- FIB チャンバに試料をセットし、希望する部分の薄膜加工を行うが、最終的に薄膜を分離するために、Fig. 2-4 に示す通り膜厚が 0.5~1µm程度であらかじめボトムカット(試料を60°傾斜し、薄膜部分の底部にイオンビームにより切りこみを入れておく)する必要がある。
- ② 試料傾斜を水平に戻し、さらに加工を行い膜
 厚 0.1 µ m以下まで薄膜化する(Fig. 2-5 左)。
- ③ 薄膜化完了後、薄膜のサイドカット(薄膜左 右両辺をイオンビームにより切りこみを入 れる)を行い、試料母材から完全に切り離す (Fig. 2-5 右)。その後、試料を FIB チャンバ より取り出し、ピックアップシステムの光学 顕微鏡のステージに移す。

関連装置:集束イオンビーム加工観察装置(FIB)

Fig. 2-4 ボトムカット

膜厚が 0.5~1μmで試料を 60 度傾斜し、薄膜部 分の底部にイオンビームにより切りこみを入れる (ボトムカット)

Fig. 2-5 切り離し加工

試料傾斜を水平に戻し、さらに膜厚が 0.1μ m以 下になるまで薄膜化する(左)。その後、薄膜の両辺 をイオンビームによりサイドカットし、試料母材よ り完全分離する

(2)薄膜のピックアップ

・プローブの作製

薄膜のピックアップを行う前に、あらかじめガ ラスプローブを作製しておく必要がある。次に示 すの手順でガラスプローブの作製を行う。

- (1) 付属のガラス棒をマイクロピペット作製器 (PC-10) に取り付ける(Fig. 2-6)。
- スタートボタン(赤いボタン)を押すとヒー ターに通電され、ガラス棒が伸びる(Fig. 2-7 左)。
- ③ ストッパにより、ガラス棒が完全に切断され る前に停止する(Fig. 2-7 中)。
- ④ ストッパが外れ、再度ヒーターに通電され、

ガラス棒が切断される(②~④までの動作は 自動で連続に行われる)。切断されたガラス 棒の先端をプローブとして用いる(Fig. 2-7 右)。

- ⑤ 切断されたガラス棒をホルダーに取り付け (Fig. 2-8,9)、マイクロフォージ(MF-900) に取り付ける(Fig. 2-10)。この時、付属の光 学顕微鏡によりヒーターの先端にガラス棒 の先端をあわせる(Fig. 2-11)。
- ⑥ 光学顕微鏡を観察しながらフットスイッチで
 ヒーターに通電し、ガラス棒の先端を丸め表
 面積を増やし、プローブとする(Fig. 2-12)。

以上の手順により、ガラスプローブの作製が完了 する。

Fig.2-6 プローブの作製1

付属のガラス棒を PC-10 に取り付ける

2回目の加熱 切断されたガラス棒

Fig. 2-7 プローブの作製 2

ヒーターに通電(左)すると、ガラスが伸び、切断 前にストッパで一旦停止する。ヒーターがガラス棒 の一番細い位置に移動して再度加熱が始まる(中)。 この時、ストッパは外れており、ガラス棒は切断さ

関連装置:集束イオンビーム加工観察装置(FIB)

Fig. 2-8 プローブの作製3 ガラス棒を取り外す。

Fig. 2-9 プローブの作製 4 ガラス棒をホルダーに取り付ける。

Fig. 2-10 プローブの作製 5 MF-900 にホルダーごとガラス棒を取り付ける

Fig. 2-11 プローブの作製 6

光学顕微鏡で観察しながらガラス棒の先端とヒ ーターの先端を合わせる。

Fig. 2-12 プローブの作製 7

フットスイッチによりヒーターに通電し、ガラス 棒の先端の表面積を増大させプローブとして使用 する

・薄膜のピックアップ

前述の手順で作られたプローブをホルダーご とマニピュレータに取り付け、あらかじめ FIB に より作製された薄膜部分をピックアップし、支持 膜上に搬送し、TEM 観察する。次に示すの手順で ピックアップによる試料作製を行う。

- ガラスプローブをマイクロマニピュレータに 取り付ける (Fig. 2-13)。
- ② ガラスプローブの先端が光学顕微鏡像の中心 になるように調整する。
- ③ FIB であらかじめ加工した試料をステージに セットし、加工した場所が光学顕微鏡像の中 心になるように試料位置を調整する。油圧ハ

関連装置:集束イオンビーム加工観察装置(FIB)

ンドルのZ軸(Fig. 2-14)と光学顕微鏡のフォ ーカス(微動)を操作し、ガラスプローブを 試料の FIB 加工した位置に近づける (Fig. 2-15)。

- ④ 光学顕微鏡の倍率 500 倍で観察しながら油圧 ハンドルの X, Y, Z を操作し、FIB の加工ボッ クスにガラスプローブの先端が入る (Fig. 2-16)ようにする(これよりガラスプロ ーブの操作は慎重に行う)。
- ⑤ 油圧ハンドルの X を操作し、ガラスプローブ
 を薄膜部分に接触させる(Fig. 2-17)。
- ⑥ 油圧ハンドルの Z を操作し、ガラスプローブの先端を、やや持ち上げる。ガラスプローブの先端に薄膜が接触しているのが確認できたら、さらに油圧ハンドルの Z を操作し、ガラスプローブを数センチ上へ持ち上げる。
- ⑦ ステージ上に(カーボン、コロジオンなどの 支持膜を貼った)メッシュを置き、光学顕微 鏡像の中心に置く(Fig. 2-18)。この操作を行 うときには、ガラスプローブの先端に試料が 付いているので注意が必要。
- ⑧ 光学顕微鏡を観察しながら油圧ハンドルの Z を操作し、メッシュの中心に向かってガラス プローブの先端を近づける(Fig. 2-19 左)。
- ⑨ 光学顕微鏡の倍率 500 倍で観察しながら油圧 ハンドルの X, Y, Z を操作し、ガラスプローブ の先端に付いている薄膜を支持膜表面に接 触させる(Fig. 2-19 中)。
- 11) 油圧ハンドルの Z を操作し、ガラスプローブ 先端をやや持ち上げる(Fig. 2-19 右)。
- 薄膜が支持膜上に載ったことが確認できたら 油圧ハンドルのZを操作し、ガラスプローブ を数センチ上へ持ち上げる。
- メッシュをピンセットで TEM ホルダーまで搬送し、セットする(Fig. 2-20)。
- TEM 観察を行う(Fig. 2-21)。

Fig. 2-13 ピックアップ手順1 ガラスプローブをマニピュレータに取り付ける

Fig. 2–14 ピックアップ手順 2 油圧ハンドルでマニピュレータを操作する

Fig. 2-15 ピックアップ手順3

試料を光学顕微鏡のステージに置き、FIB 加工した位置が光学顕微鏡像の中心にくるように調整する

関連装置:集束イオンビーム加工観察装置(FIB)

Fig. 2-16 ピックアップ手順 4 ガラスプローブの先端が加エボックスの中に入 るように油圧ハンドルで調整する

Fig. 2-17 ピックアップ手順5

薄膜部分にガラスプローブの先端を接触させる。 薄膜部分がガラスプローブに完全に付いたことを 確認したら、ガラスプローブを数センチ上まで持ち 上げる。

Fig. 2-18 ピックアップ手順6 光学顕微鏡のステージに支持膜を貼ったメッシ ュを置く。この時、ガラスプローブの先端に試料が 付いているので、誤って接触しないように注意する

関連装置:集束イオンビーム加工観察装置(FIB)

JEOL Application Data Sheet

Fig. 2-19 ピックアップ手順 7

油圧ハンドルを操作し、ガラスプローブの先端を 支持膜に近づける(左)。薄膜部分が支持膜に接触し、 ガラスプローブの先端から離れる(中)のを確認し、 ガラスプローブをメッシュから離す(右)。

Fig. 2–20 ピックアップ手順 8 メッシュを TEM ホルダーにセットする

Fig. 2-21 ピックアップ手順9(TEM 観察) 試料:タングステンビア

