日本電子株式会社

分析機器 応用研究グループ

お問い合わせ:分析機器販促グループ Tel:(042)528-3340 www.jeol.co.jp

No. 016

MS Tips

JMS-K9 Application Data

新水道法に基づくハロ酢酸類の測定 ~溶媒抽出-誘導体化-GC/MS 法~

平成 16 年 4 月より施行される新しい水道水質基準ではモノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸の 3 つのハロ酢酸類について基準値が設けられており、その測定方法には溶媒抽出ー誘導体化ーGC/MS 法が採用されている。今回、これらハロ酢酸類の測定感度及び連続測定の再現性について、GC/MS

に"JMS-K9"を用いて検討を行った。尚、ハロ酢酸類の分析法は平成15年7月22日に公表された厚生労働省告示第261号-別表第17に記載されている方法(以下定法と省略)に準じた。

定法に示されているハロ酢酸類の分析法の概要を図1に示した。またハロ酢酸類の基準値を表 1 に示した。定法では検水中のハロ酢酸類は溶媒抽出により約 10 倍濃縮され、ジアゾメタンによる誘導体化を経て GC/MS 測定に供される。水道法では各項目について検出下限値が基準値の 1/10 以下となることが求められている。従って、GC/MS 測定の段階で要求される検出下限値は、基準値の 1/10 の値に分析方法の濃縮倍率を掛け合わせた濃度となり、モノクロロ酢酸: 20μ g/L、ジクロロ酢酸: 40μ g/L、トリクロロ酢酸: 200μ g/L である。

定法におけるハロ酢酸類の検量線の作成法は、 段階的に濃度調整した標準水溶液を検水として、 図1に示した方法により溶媒抽出および誘導体化 を行った後に GC/MS 測定して検量線を作成するこ とになっている。しかし、今回は溶媒抽出は行わず に 1000 μ g/L のハロ酢酸類標準溶液を直接ジアゾ メタンで誘導体化し、その溶液を段階的に希釈して 検量線用の標準溶液とした。従って、今回の測定 結果では溶媒抽出に起因する誤差及び回収率の 低下などの要因は評価していない。よって今回の 結果は、装置そのものの感度及び再現性を評価し た結果となる。尚、今回の検討では誘導体化したハ 口酢酸類の濃度を誘導体化する前のハロ酢酸類の 濃度で表記している。これは誘導体化反応の前後 で化学種が変わるため重量ベースの濃度表記では 数値が変化してしまうためである。

ハロ酢酸類の測定に使用した GC/MS 条件を表 2に示した。まず誘導体化したハロ酢酸類標準溶液 $(1000 \, \mu \, g/L)$ を SCAN 測定して各々のハロ酢酸類 誘導体化物のマススペクトルを確認した。得られた

表 2 GC/MS 条件

使用カラム : DB-1701 0.25mm×30m (膜厚:0.25 μ m)

カラム流量 :1mL/min (He)

オーブン昇温条件 :40°C(2min) ~10°C/min~110°C(0min)

:200°C

~20°C/min~250°C(3min)

注入量 :2 µ L (Splitless) インジェクター温度 :200℃ イオン源温度 :230℃

インターフェース温度

 分液ロート
 ← 検水 50mL (硫酸(1+1)でpH 0.5以下に調製)

 ← 塩化ナトリウム 20g ← tert・ブチルメチルエーテル(MTBE)4mL

 2分間振とう
 (水相)

 (水相)
 (MTBE)

 ← 無水硫酸ナトリウム 適量
 2mLを分取 | ← ジアゾメタン(MTBE溶液)200μL

 30分間静置 ← 内部標準物質: 10mg/L 1,2,3-トリクロロプロパン 20μL

 廃液
 GC/MS測定

図 1 ハロ酢酸類の分析法

表 1 ハロ酢酸類の基準値(単位: μg/L)

X · · · · · · · · · · · · · · · · · · ·					
化合物名	基準値	基準値	GC/MS 測定		
		の 1/10	の目標濃度		
モノクロロ酢酸	20	2	20		
ジクロロ酢酸	40	4	40		
トリクロロ酢酸	200	20	200		

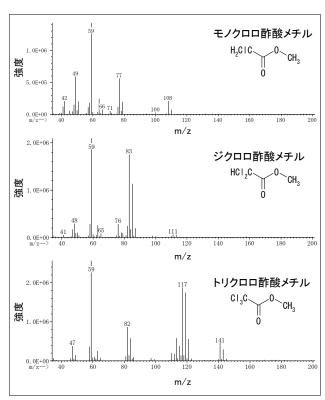


図2 ハロ酢酸類のマススペクトル

表 3 SIM のグルーピング条件

化合物名	保持時間(mm:ss)	モニターイオン	サイクルタイム
モノクロロ酢酸	04:00~07:20	m/z 77, 108	400msec
ジクロロ酢酸	07:21~08:30	m/z 83, 85	400msec
トリクロロ酢酸	08:31~09:10	m/z 117, 119	400msec
1,2,3-トリクロロプロパン(IS)	09:11~20:00	m/z 75, 110	400msec

ハロ酢酸類のマススペクトルを図2に示した。

次に低濃度領域における感度・再現性を評価するため、SIM モードにおける検討を行った。定法では各ハロ酢酸類について定量イオン、確認イオンに使用する質量数が指定されており、今回はその値を使用してSIMで測定を行った。SIM測定における各モニターイオン及びグルーピングの条件は表3に示したとおりである。

検量線は 0.33、1.00、3.33、10.0、33.3、100、333、1000 μ g/L の 8 種類とし、各々5 回連続で測定を行った。ハロ酢酸類の検量線を図 4 に示した。各々の検量線の相関係数はモノクロロ酢酸が 0.9997、ジクロロ酢酸が 0.9997、ドリクロロ酢酸が 0.9996 であり、全てのハロ酢酸類について良好な直線性が得られた。

濃度 10μ g/L を測定した際のマスクロマトグラムを図 3 に示した。目標濃度以下にも関わらず、全てのハロ酢酸を2桁のS/N(Peak to Peak 計測)で検出可能であった。

各濃度の標準溶液を5回連続で測定した結果から計算した変動係数(C.V.値)を表 4 に示した。水道法では、有機物の項目ついて基準値の 1/10 付近の定量値の変動係数(C.V.)が 20%以内であるこ

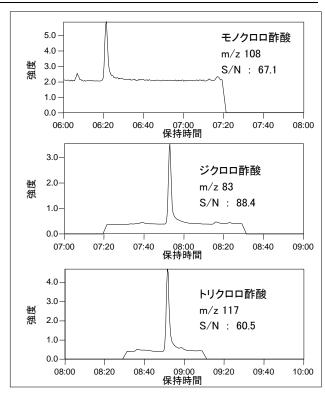


図3 ハロ酢酸類標準溶液(10 µg/L)のマスクロマトグラム

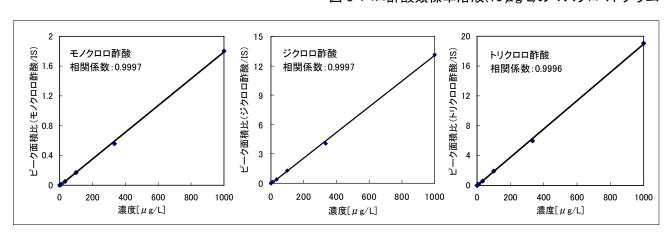


図4 ハロ酢酸類の検量線

とが求められている。今回の測定結果は、モノクロロ酢酸で $1000\,\mu\,\mathrm{g/L}$ から $1\,\mu\,\mathrm{g/L}$ の範囲で、又ジクロロ酢酸およびトリクロロ酢酸は $1000\,\mu\,\mathrm{g/L}$ から $0.33\,\mu\,\mathrm{g/L}$ の範囲で C.V.20%以下の測定が可能であった。

以上ように、"**JMS-K9**"を用いるハロ 酢酸類の測定について検討した結果、 水道法で要求されている感度と精度を 十分に満たす結果が得られた。

表 4 ハロ酢酸類の連続分析の再現性

標準溶液濃度	CV (%)			
μ g/L	モノクロロ酢酸	ジクロロ酢酸	トリクロロ酢酸	
0.33	44.3	13.4	5.3	
1.00	10.7	1.1	1.8	
3.33	8.4	6.8	0.7	
10.00	9.6	0.5	4.4	
33.33	1.4	0.8	0.7	
100.00	2.4	0.9	0.6	
333.33	0.5	0.7	0.8	
1000.00	1.2	0.7	1.9	