JEOL MS Data Sheet

MS Tips

日本電子株式会社 分析機器 応用研究グループ

お問い合わせ:分析機器販促グループ

Tel: (042) 528-3340

No.049

JMS-T100GC "AccuTOF GC"によるプール血清中 POPs の迅速分析[] ~ PCBs の定量分析 ~

【はじめに】

ヒト血液は食物連鎖や生活環境を通じた暴露により PCBs を含む POPs(残留性有機汚染物質)による汚染を受けている。これら POPs は難分解性で生体内に長期に渡り蓄積し、発ガン性や免疫毒性、内分泌撹乱作用等による生体影響が危惧される。そのためヒト血液中の POPs をモニタリングする事は、人体蓄積の指標として重要である。これら PCBs を含む POPs の測定は高分解能二重収束型質量分析装置を用いた SIM モードによる方法が主流であるが、この方法では測定チャンネル数の制限やグルーピングの制限等により、多検体の同時多成分定量分析には有効とは云い難く、さらに SCAN モードによる測定でない為、スペクトルによる化合物の同定が不可能である。

そこで、スペクトル記録速度の速い TOFMS の利点を活かし、指定した質量範囲全域のマススペクトルを高感度に取得し、そのマススペクトルから作成したマスクロマトグラムにより、4 から 10 塩素化体 PCBs の定量分析を行った。そして、血液試料のような夾雑物の多い試料に対し GC/TOF-MS を用いて微量定量分析が可能か検証した。

【試料及び方法】

健常人を対象に採血を行い、プール血清を作製した。これを5つに分け、分析に供した。 プール血清は分析まで-30 で凍結保管した。

前処理操作

前処理は、固相抽出(SPE)を用い前処理の 迅速化及び簡素化を行った。分析フローを図 1 に示す。

ヒト血清(2g) コンディショニング HCI(0.4ml) 1) Hexane 5ml 10%Acetone水溶液 8ml 2) Acetone 5ml $^{13}C_{12}$ -PCBs 500pg (Acetone) 10%Acetone水溶液 5ml SDB系固相 -SPE abselut NEXUS 洗浄 20 % Methanol 10 ml 乾燥 N₂gas purge (30min) 溶出 Hexane 5ml - 13C₁₂-CB138 500pg GC/TOF-MS

図 1. 固相抽出の分析フロー

測定条件

GC条件 GC: Agilent社製 6890N

カラム: HT8-PCB(30m x 0.25mml.D.)

オープン: 120 (1min) 120 min 160 6 /min 280 (3min)

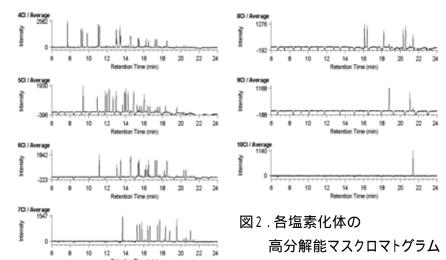
注入口: 280 、Splitless

注入量: 2μΙ

キャリアガス: He、1.0ml/min(定流量)

MS条件 MS: JMS-T100GC "AccuTOF GC"

測定質量範囲: m/z 170 - 520


スペクトル記録速度: 0.20 秒(5 スペクトル/秒)

イオン源: El+(40eV、600 μ A)

【結果】

図2に4から10塩素化体の最大強度同位体の理論質量±0.05で作成した高分解能マスクロマトグラムを示す。

"AccuTOF GC"では、常に 高分解能状態でプロフィル型の データを取得しているため(これをスペクトルモードと呼ぶ)、 測定データからマスクロマトグ ラムを作成する際には、特定の

質量数ではなく、質量範囲(マスクロマトグラム作成の際の『ウィンドウ幅』と言う)を指定する。マスクロマトグラムでは4塩素化体から10塩素化体のPCBが感度良く検出されている。"AccuTOF GC"は安定した高感度測定がその特長の1つであり、ppbオーダーの試料も、マスクロマトグラムにより充分観測可能である。

図3 にプール血清中 7 塩素化 体の TIC、マスクロマトグラムと、 表 1 に定量解析結果を示す。

TIC では夾雑成分に埋もれてしまっている PCBs も、高分解能マスクロマトグラムを作成することにより、感度良〈検出することが出来ている。これにより、夾雑成分の影響を受けることな〈定量を行うことが可能である。

表 1 は、固相抽出による前処理 から GC/TOF-MS を用いた測定 までの各 PCB における定量結果 を示す。CV10%前後と安定した 値が得られた。

TIC #180 S/N=34 (0.79pg) #170 マスクロマトグラム #170 Retention Time (min)

図3.プール血清中の7塩素体のマスクロマトグラム

表 1. 定量解析結果(プール血清 2ml 使用時)

【まとめ】

GC-TOFMS における測定の再 現性は良く、定量分析を行うことが 可能である。

前処理の迅速化と TOF-MS による優れた定量能力により生産性

Compound	serum 1	serum 2	serum 3	serum 4	serum 5	SD	AVE.	cv%
#99	0.35	0.38	0.39	0.34	0.36	0.02	0.36	5.37
#118	0.58	0.65	0.64	0.62	0.60	0.03	0.62	4.08
#153	2.44	2.62	2.70	2.46	2.64	0.11	2.57	4.43
#164	0.50	0.50	0.56	0.47	0.49	0.03	0.51	6.73
#138	0.87	0.98	0.84	0.80	0.91	0.07	0.88	7.97
#182/187	0.49	0.54	0.47	0.41	0.49	0.05	0.48	10.11
#180	0.84	0.86	0.90	0.79	0.93	0.06	0.87	6.40
#170	0.21	0.24	0.22	0.20	0.17	0.03	0.21	12.29
#170	0.21	0.24	0.22	0.20	0.17	0.03	0.21	12.29

(pg/g wet)

が向上し、分析のハイスループット化を行う事ができた。

【データ提供】

愛媛大学農学部 環境計測学研究室 榎本剛司、松田宗明、河野公栄、脇本忠明 氏