日本電子株式会社

分析機器本部 応用研究グループ お問い合わせ:分析機器販促グループ Tel:(042)528-3340

No. 060

MS Tips

熱分解 GC/AccuTOF GC による ABS 樹脂の定性分析 Ⅱ - 混成ダイマー由来の 4 成分の解析 –

【はじめに】

熱分解 GC/MS とは、温度制御可能な加熱炉や誘導加熱型(キューリー点型)装置内に試料を導入し、発生した熱分解生成物を GC にて分離し、MS で検出する分析手法である。この手法により、溶媒に溶け難い高分子化合物の組成分析が可能となる。従来、熱分解 GC/MS の MS には主に四重極型 MS が用いられてきたが、これを TOFMS にすることで精密質量を得ることが可能になり、より精度の高い定性分析、組成推定が可能となる。

以下に熱分解 GC/TOFMS 測定例として、EI 法、CI 法、FI 法にてアクリロニトリル(A)-ブタジエン(B)-スチレン(S)共重合体(以下 ABS 樹脂)を測定した結果について紹介する。

【試料及び条件】

試料	ABS 樹脂
H- 111	

熱分解 GC 条件			
熱分解装置	フロンティアラボ社製		
	ダブルショットパイロライザー		
熱分解炉温度	550°C		
GC	Agilent 社製 6890N		
カラム	DB-5ms, 30m × 0.25mml.D.		
	膜厚 0.25 μ m		
オーブン	50°C→5°Cmin→280(4min)		
注入口	280°C、Split(1:50)		
キャリアガス	He(定流量モード:1mL/min)		

MS 条件	
MS	JMS-T100GC "AccuTOF GC"
イオン	EI ⁺ : 70eV、300 μ A
化法	CI ⁺ : 200eV, 300 μ A,
	イソブタン 0.1mL/min
	FI ⁺ : カソード電圧 -10kV、
	エミッタ電流 0mA
測定質量	m/z 35-600
範囲	
スペクトル	0.5 秒(2 スペクトル/秒)
記録速度	

【結果及び考察】

以下に得られた TIC を示す。

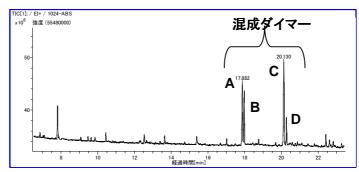


図 1 EI 法で得られた TIC(リテンションタイム 6~23 分の拡大図)

参考文献 $^{[1]}$ より混成ダイマー由来の成分と推測された 4 成分 (図 1 中の A、B、C、D)の、各イオン化法での質量スペクトルと精密質量計算結果を示す。

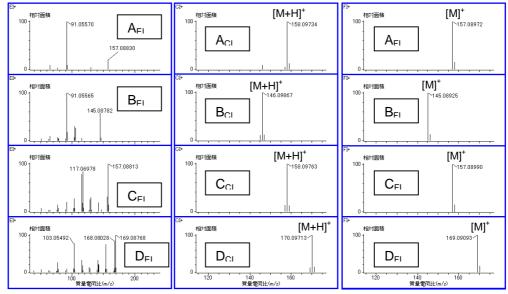


図2 4成分の質量スペクトル(左列:EI法、中列:CI法、右列:FI法)

表1 4成分の精密質量測定結果

成分		中测体	理論値との	推定
		実測値	誤差(mmu)	組成式
	Λ	91.0557	0.9	C ₇ H ₇
	A _{EI}	157.0883	-0.9	C ₁₁ H ₁₁ N
B _{EI}	91.0557	0.9	C ₇ H ₇	
	145.0878	-1.4	C ₁₀ H ₁₁ N	
ш	Ш C _{EI}	117.0698	-0.6	C ₉ H ₉
		157.0881	-1.1	C ₁₁ H ₁₁ N
DEI		103.0549	0.1	C ₈ H ₇
	DEI	154.0647	-1.0	C ₁₁ H ₈ N
		169.0877	-1.5	C ₁₂ H ₁₁ N

成分	実測値	理論値との	推定	
19.77		誤差(mmu)	組成式	
	A _{CI}	158.0973	0.3	C ₁₁ H ₁₂ N
ō	B _{Cl}	146.0987	1.7	C ₁₀ H ₁₂ N
	Ccı	158.0976	0.6	C ₁₁ H ₁₂ N
	D _{CI}	170.0971	0.1	C ₁₂ H ₁₂ N
FI	A _{FI}	157.0897	0.6	C ₁₁ H ₁₁ N
	B _{FI}	145.0893	0.1	C ₁₀ H ₁₁ N
	C _{FI}	157.0899	0.7	C ₁₁ H ₁₁ N
	D _{FI}	169.0909	1.7	C ₁₂ H ₁₁ N
	L ''		<u> </u>	- 12 1111

成分 A 及び成分 C の EI 法、CI 法、FI 法の精密質量からその組成式は $C_{11}H_{11}N$ であると考えられる。これら 2 成分はアクリロニトリル (A) とスチレン (S) の混成ダイマーであり、また成分 A では m/z91 が、成分 C では m/z117 が高い強度で観測されており、このことから各々の構造式は図 3 に示すものが考えられる。

また成分 B は各イオン化法における精密質量の値とライブラリデータベース検索とから、その成分は 4-Phenylbutyronitrile であると考えられる。成分 D は混成ダイマーにメチレン基 (CH_2) がついた構造だと考えられる。

従来熱分解 GC/MS には四重極型 MS が用いられることが多いが、AccuTOF GC を用いることで精密質量を簡単に得ることが出来る。熱分解にて観測される多くの成分に対して、CI 法や FI 法での精密質量を得ることで、より精度の高い定性分析が可能になる。

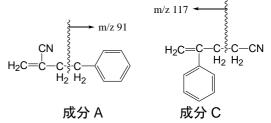


図3 成分Aと成分Cの推定構造式

【参考文献】

[1] 高分子の熱分解ガスクロマトグラフィー基礎およびデータ集、柘植 新・大谷 肇 著、㈱テクノシステム