日本電子株式会社

分析機器本部 応用研究グループ お問い合わせ:分析機器販促グループ Tel:(042)528-3340 www.jeol.co.jp

No.D032

MS Tips

~Application Note for DART~

DART における低極性化合物の分析例

~有機 EL の分析~

【はじめに】 MSTips No.D031 では DART における高極性化合物の測定例を紹介した。本アプリケーションデータでは DART における低極性化合物の測定例を紹介する。

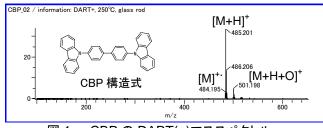
近年注目されている発光材料の一つである有機 EL(有機エレクトロルミネッセンス: organic electroluminescence)の質量分析は LC/MS(APCI,APPI),GC/MS(MSTips78、87 参照),MALDI-TOFMS, TOFSIMS などが一般的である。

今回は有機 EL に対し DART を使用して質量分析を行ったので、その結果について報告する。

【測定方法】 有機 EL を付着させたガラス棒を DART イオン源のサンプリング領域にかざした。

【測定条件】 O測定試料 4,4'-Bis(carbozoil-9-yl)biphenyl: CBP

4,4'-Bis(2,2-diphenyl-ethen-1-yl)biphenyl: DPVBi


(Luminescence Technology Corp.製)

〇分析装置 JMS-T100TD

Oイオン化モード DART(+)

OHeガス温度 250 °C

【測定結果】

DPVBi_01 / information: DART+, 250°C, glass rod

[M+H]⁺
511.243

DPVBi 構造式
510.236
483.212
528.267[M+NH4]⁺
528.267[M+NH4]⁺
600

図 2. DPVBi の DART(+)マススペクトル

表1. CBPの組成推定結果

表 2. DPVBi の組成推定結果

実測値	理論値	エラー値	推定組成式	不飽和数	実測値	理論値	エラー値	推定組成式	不飽和数
		(10 ⁻³ u)					(10 ⁻³ u)		
485.20113	485.20177	-0.64	C ₃₆ H ₂₅ N ₂	25.5	511.24287	511.24258	0.29	C ₄₀ H ₃₁	25.5
501.19760	501.19669	0.92	C ₃₆ H ₂₅ N ₂ O	25.5	528.26722	528.26912	-1.90	C ₄₀ H ₃₄ N ₁	25.5

両サンプルにおいて、[M+H][†]がベースピークとして検出された。また[M+NH₄][†]や[M][†]・も検出されていることが確認された。CBP においては精密質量から[M+H+O][†]と考えられるイオンも検出されていた。

このように有機 EL のような低極性化合物においても DART が有用であることが示せた。