

FIB試料作製でお困りの方へ ~FIBによるTEM試料の作り方~

日本電子株式会社

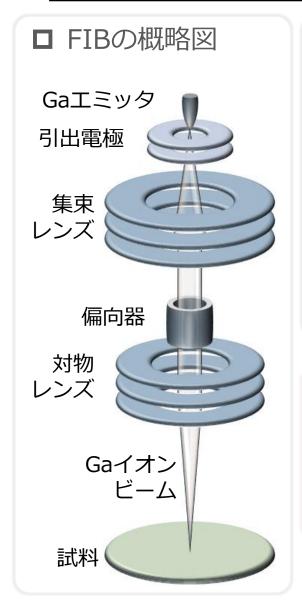
EP事業ユニット 山田 晶子

目次

- 1. FIBの概要
- 2. FIBによるTEM薄膜試料作製の基本手順
- 3. TEM薄膜試料作製の加工条件最適化のポイント解説 SiウェハのTEM薄膜試料作製(幅5 µm、厚さ30 nm)
 - □ ブロック試料作製
 - デポジション材料の選択
 - 加工モードの選択
 - イオンビーム電流量の選択
 - □ 薄膜化加工
 - イオンビーム電流量の選択
 - 試料傾斜角の決定
 - 低加速仕上げ
- 4. 応用例

半導体デバイスのTEM薄膜試料作製(幅2 µm、厚さ30 nm)

5. まとめ



FIBの概要

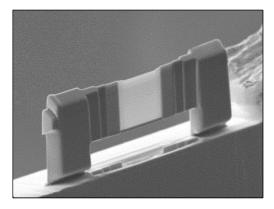
FIBが持つの3つの基本機能

FIBの概要

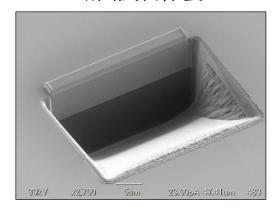
□ 基本機能

ミリング

デポジション

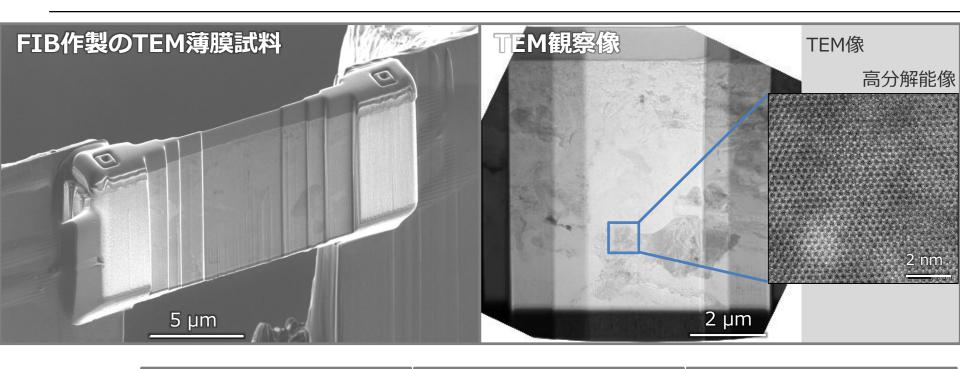

観察

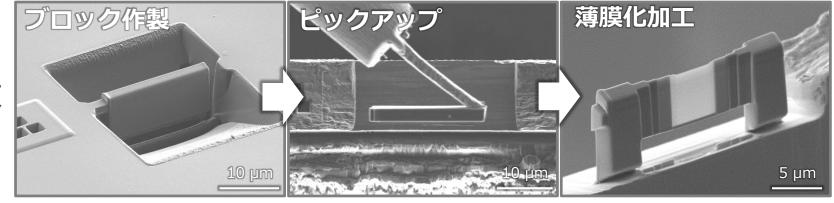
ロ FIBの特長


サブミクロン以下の<u>高い</u> 位置精度で、試料作製が 可能!

□ 主なアプリケーション

TEM試料作製

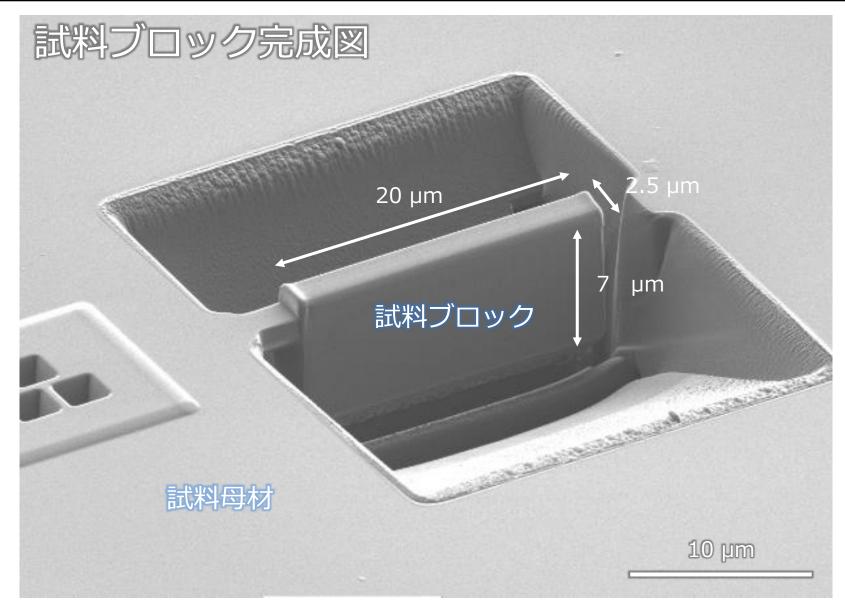

断面試料作製


TEM薄膜試料作製の基本手順

TEM薄膜試料とは

作製手順

TEM薄膜試料作製の加工条件最適化のポイント (標準的な加工条件)

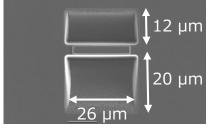

Si基板の薄膜試料作製(幅5 µm、厚さ30 nm)

使用装置: JIB-4700F

JIB-4000PLUS

Step1: 試料ブロック作製

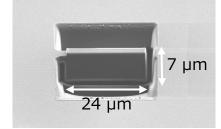
Step1:試料ブロック作製 …作製手順


FIBグリッドに乗せるための試料ブロックを作製します。 試料ブロックのサイズ:幅 20 μm, 厚さ 2.5 μm, 高さ 7μm

①デポジション

○デポジション材料 …カーボン ○イオンビーム電流値 …320 pA

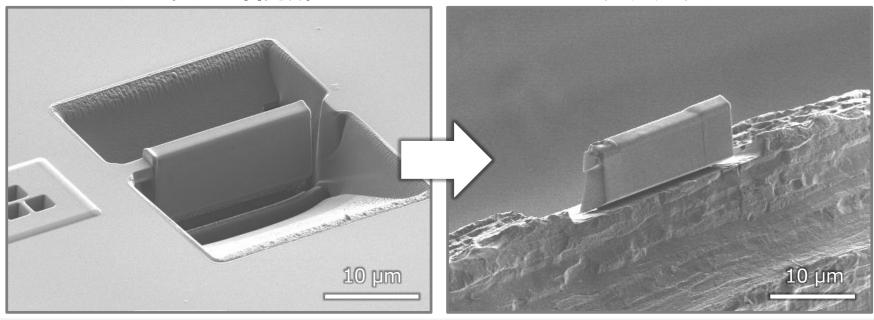
②粗加工


○ミリングモード ····Rapid○イオンビーム電流値 ····30 nA

③トリミング

〇ミリングモード …Mill〇イオンビーム電流値 …10 nA

④ボトムカット



〇ミリングモード …Mill 〇イオンビーム電流値 …10 nA

Step1: 試料ブロック作製

ブロック試料完成

ピックアップ

<試料室内マニピュレータ OmniProbe350>

Multi Beam System JIB-4700F に、試料室内マニピュレータのOxford Instruments社製 OmniProbe350 が取り付け可能です。

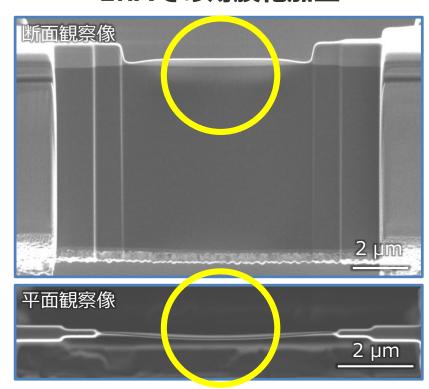
Step2:薄膜化加工(30 kV)

Step2:薄膜化加工(30 kV) …加工手順

試料ブロックをTEM観察が行える厚みまで薄く加工します。 30kVのイオンビームでは、膜厚150 nmまで加工します。

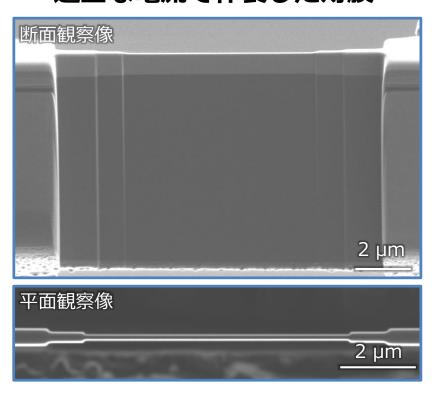
	試料膜厚	ミリング幅	イオンビーム 電流値	傾斜角
10 µm → 500 nm	~500 nm	10 μm	1 nA	0.8°
8 µm ←250 nm	~ 250 nm	8 μm	320 pA	0.8°
5 µm ~150 nm	∼ 150 nm	5 μm	100 pA	0.8°

Step2: 薄膜化加工(30 kV) …電流値の選択


試料ブロックをTEM観察が行える厚みまで薄く加工します。 30kVのイオンビームでは、膜厚150 nmまで加工します。

	試料膜厚	ミリング幅	イオンビーム 電流値	傾斜角
10 µm ← → ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	∼ 500 nm	10 μm	1 nA	0.8°
≈250 nm	~ 250 nm	8 μm	320 pA	0.8°
5 μm ~150 nm	∼ 150 nm	5 μm	100 pA	0.8°

Step2: 薄膜化加工(30 kV) …電流値の選択


試料ブロックをTEM観察が行える厚みまで薄く加工します。 30kVのイオンビームでは、膜厚150 nmまで加工します。

1nAでの薄膜化加工

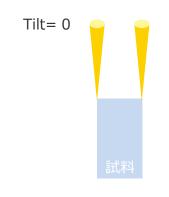
- ・デポジションの減少
- ・熱ダメージによる試料の変形

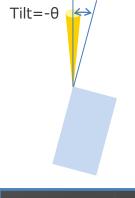
適正な電流で作製した薄膜

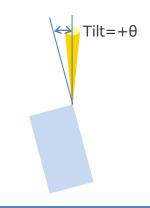
膜厚に応じた加工電流値の選択が重要

Step2: 薄膜化加工(30 kV) …傾斜角の選択

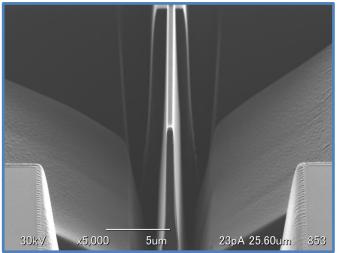
試料ブロックをTEM観察が行える厚みまで薄く加工します。 30kVのイオンビームでは、膜厚150 nmまで加工します。

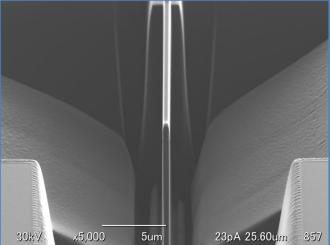

	試料膜厚	ミリング幅	イオンビーム 電流値	傾斜角
10 µm ← 500 nm	~500 nm	10 μm	1 nA	0.8°
8 μm ~250 nm	∼ 250 nm	8 μm	320 pA	0.8°
5 µm ~150 nm 15	~150 nm	5 μm	100 pA	0.8°


Step2: 薄膜化加工(30 kV) …傾斜角の選択

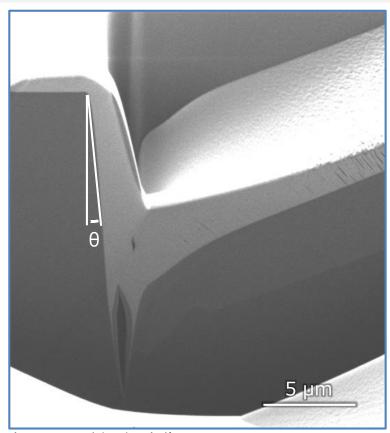

〇傾斜角の決め方

- ◆ FIBによる加工では試料断面に傾斜ができる。
- ◆ 均一な膜厚にするためには、断面傾斜を打ち消すように試料を傾斜する。

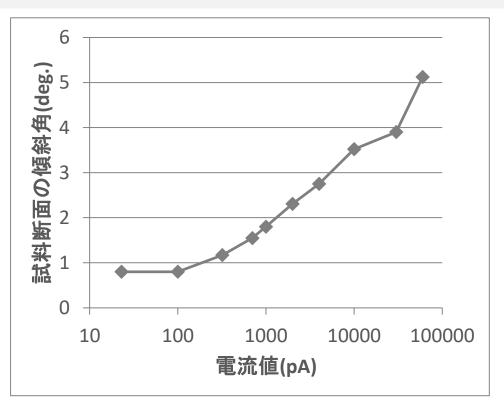

加工時の試料傾斜



加工形状(薄片断面)

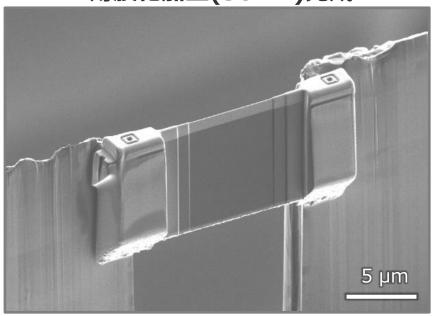


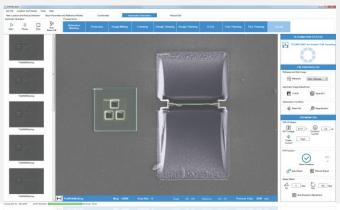
加工時の試料傾斜角の最適値が重要


Step2: 薄膜化加工(30 kV) …傾斜角の選択

〇傾斜角の決め方

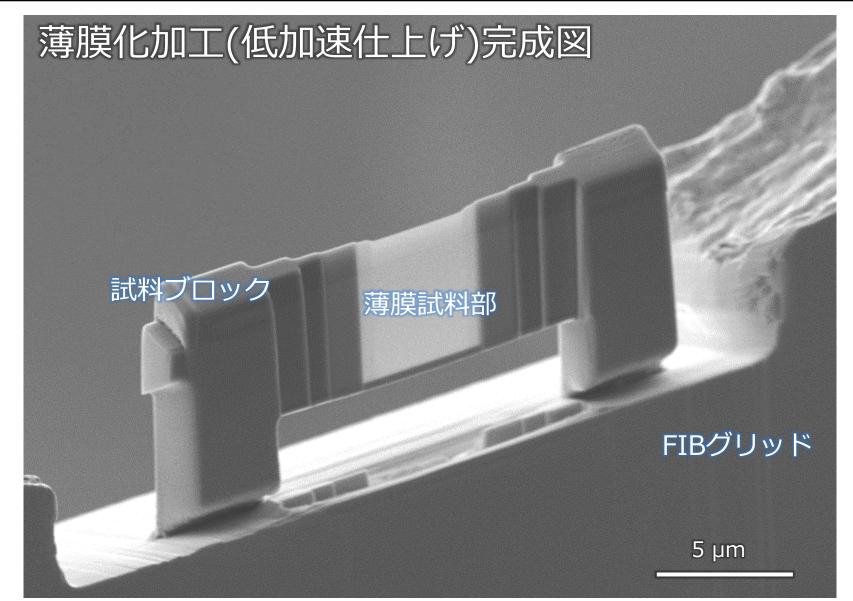
- ◆ FIBによる加工では試料断面に傾斜ができる。
- ◆ 均一な膜厚にするためには、断面傾斜を打ち消すように試料を傾斜する。


加工面の断面観察像


傾斜角と同量のステージ傾斜をかけることで 試料が平行になる

Step2:薄膜化加工(30 kV)

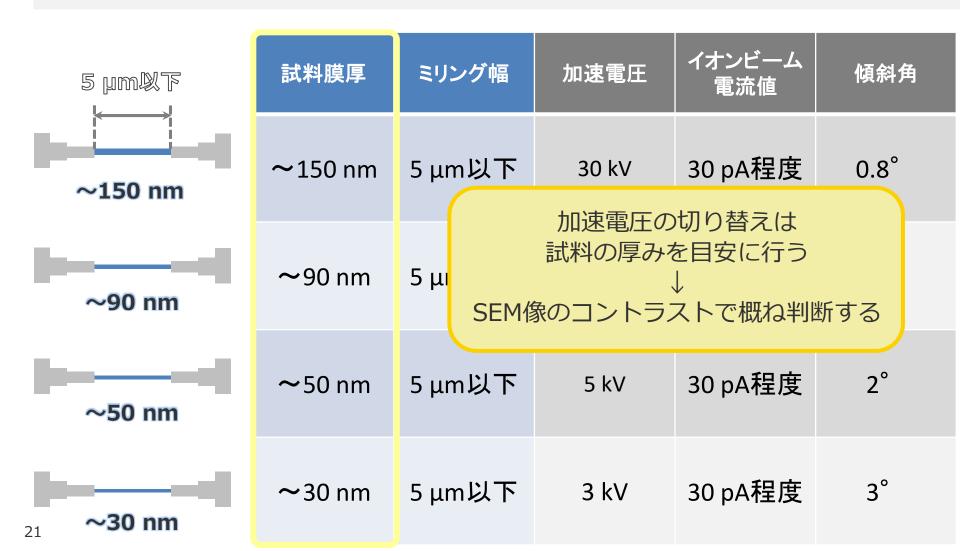
薄膜化加工(30 kV)完成



<自動TEM試料作製システム STEMPLING>

自動TEM試料作製システム STEMPLING は、 集東イオンビーム加工観察装置 JIB-4000PLUS と 複合ビーム加工観察装置 JIB-4700F のTEM試料作製を 自動化するオプションソフトウェアです。 自動で試料作製を行いますので、誰でもTEM試料作製が 行えます。

Step2:薄膜化加工(低加速仕上げ)

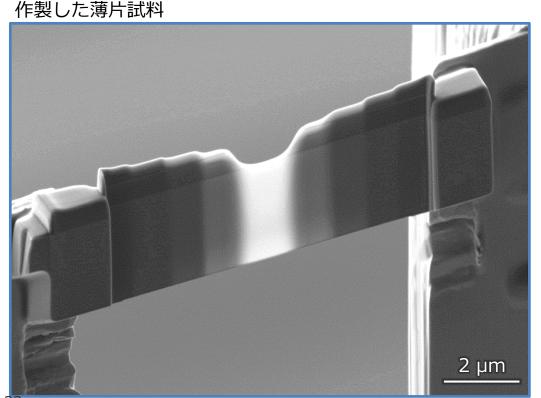

Step2:薄膜化加工(低加速仕上げ) …加工手順

加速電圧を低い値に変更し、薄膜化加工を行います。低加速加工によって非晶質層を取り除きます。

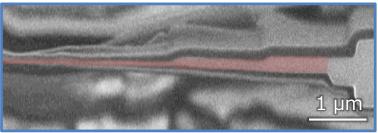
5 µm¥F	試料膜厚	ミリング幅	加速電圧	イオンビーム 電流値	傾斜角
~150 nm	~150 nm	5 μm以下	30 kV	30 pA程度	0.8°
~90 nm	∼ 90 nm	5 μm以下	10 kV	30 pA程度	1.5°
~50 nm	∼ 50 nm	5 µm以下	5 kV	30 pA程度	2°
₂₀ ~30 nm	~ 30 nm	5 µm以下	3 kV	30 pA程度	3°

Step2:薄膜化加工(低加速仕上げ) …加工手順

加速電圧を低い値に変更し、薄膜化加工を行います。低加速加工によって非晶質層を取り除きます。


Step2:薄膜化加工(低加速仕上げ) …加速電圧の選択

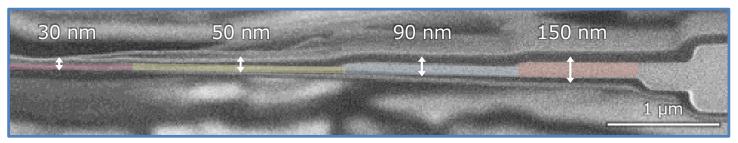
〇試料の厚みの判断の仕方


◆ 膜厚はSEM像のコントラストによって概ね判断できる。

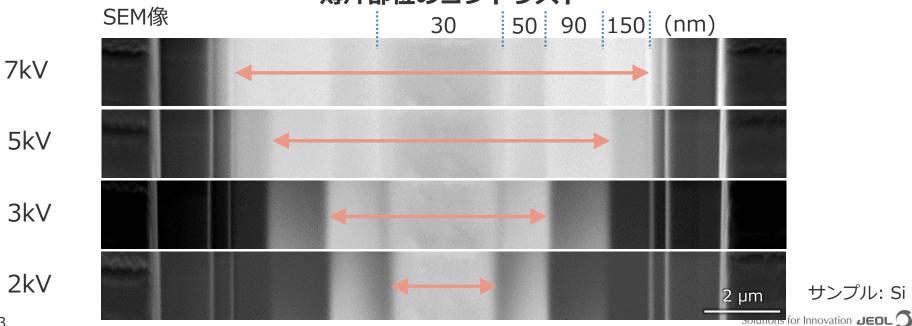
《実験》

- 試料にシリコンを用い、膜厚とSEM像のコントラストの関係を調べた。
- 様々な厚みを持つ薄片試料を作製し、様々な加速電圧でSEM観察を実施。

薄片試料の厚みの様子

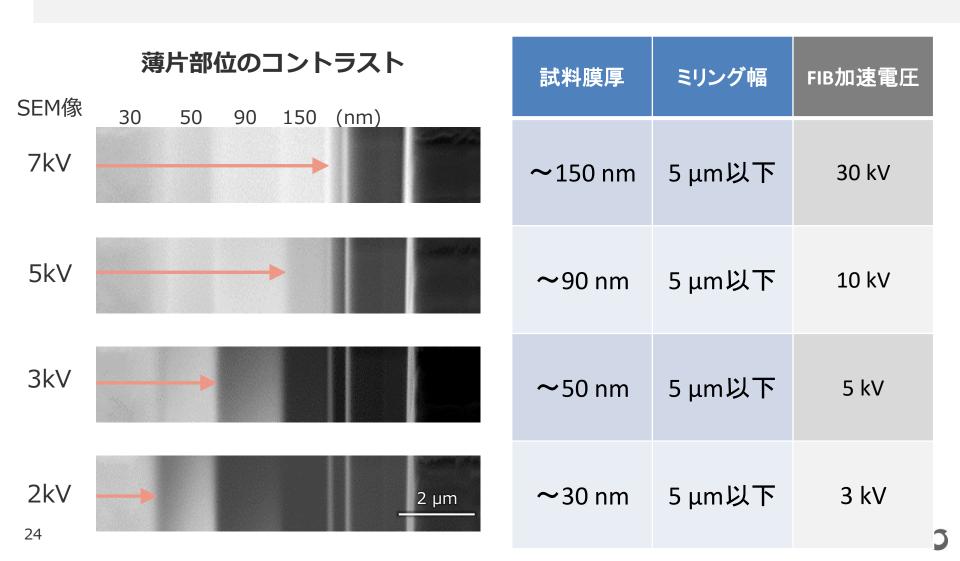


Step2:薄膜化加工(低加速仕上げ) …加速電圧の選択

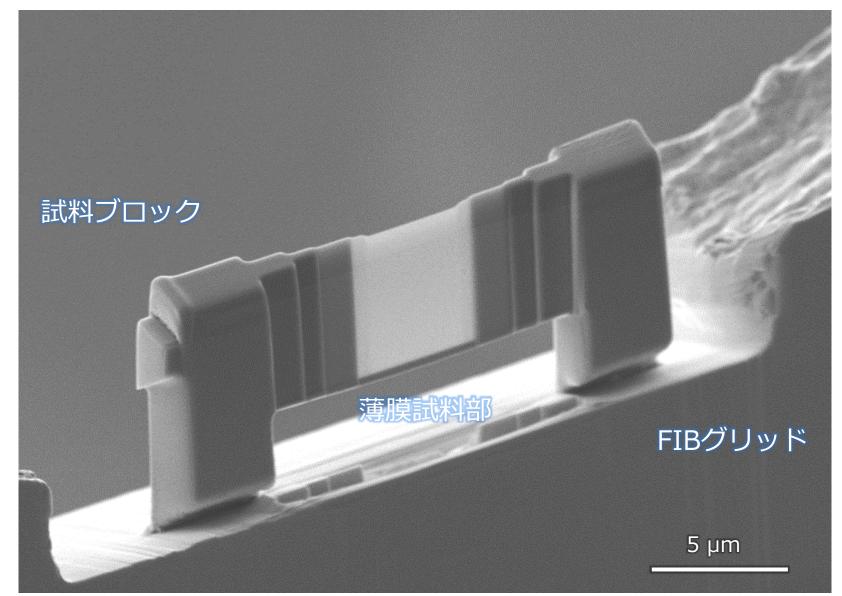

〇試料の厚みの判断の仕方

◆ 膜厚はSEM像のコントラストによって概ね判断できる。

薄片部位の断面像



サンプル: Si


Step2:薄膜化加工(低加速仕上げ) …加速電圧の選択

〇試料の厚みの判断の仕方

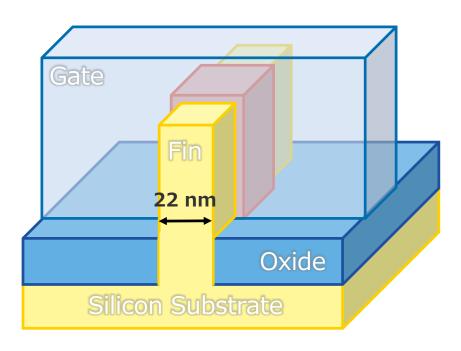
◆ 膜厚はSEM像のコントラストによって概ね判断できる。

Step2:薄膜化加工(低加速仕上げ)

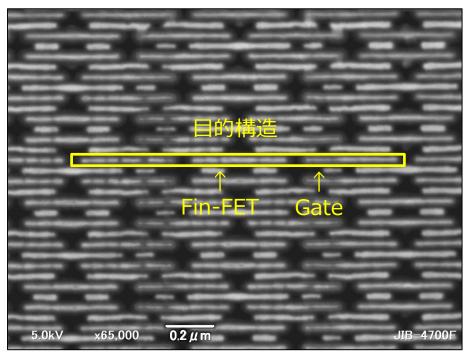
応用例

試料:半導体デバイス

使用装置: JIB-4700F



半導体デバイス中のFinFET構造


OFinFETとは

- ◆ 金属酸化膜半導体電界効果トランジスタ(MOSFET)の一種。
- ◆ 非常に小さいため、特定部位での加工と精密な薄膜化が必要になる。

模式図

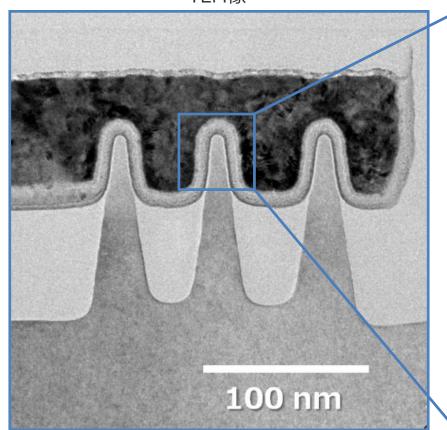
SEM像

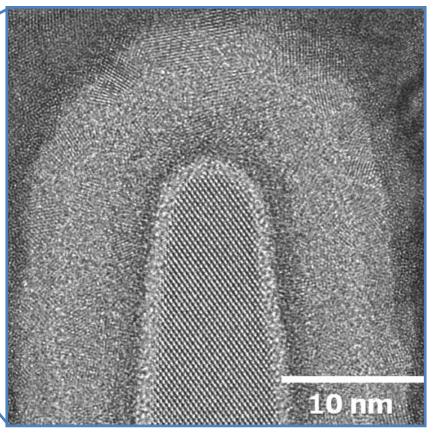
目的構造を含む30 nmのTEM薄膜試料を作製

試料作製

FIB加工

使用装置: JIB-4700F


膜厚	SEM観察像	加速電圧(SEM)	加速電圧(FIB)
100 nm	宮極層 2 μm 3.0 i, V x12.000 1μm	3 kV	30 kV
50 nm	1 μm	2 kV	5 kV
30 nm	2.00kV x35.000 0.5/f/m JIB-4700F	2 kV	3 kV


観察

TEM観察

使用装置: JEM-ARM200F

TEM像
TEM像

- ・目的構造位置で試料作製ができている。
- ・高分解能観察に十分な膜厚に加工できている。

まとめ

○ Siを例に標準的なTEM薄膜試料作製条件を示しました。

○ 材料によって条件は異なりますが、今回の発表を参考にして いただくと簡単に最適条件を求めることができます。

薄膜化加工条件まとめ

サンプル: Si

	膜厚	ミリングサイズ	加速電圧	イオンビーム 電流値	傾斜角
~500 nm	500 nm	10 μm	30 kV	1 nA	0.8°
~250 nm	250 nm	8 μm	30 kV	320 pA	0.8°
~150 nm	150 nm	5 μm	30 kV	100 pA	0.8°
~90 nm	90 nm	5μm以下	10 kV	30 pA程度	1.5°
~50 nm	50 nm	5 μm以下	5 kV	30 pA程度	2°
~30 nm	30 nm	5 μm以下	3 kV	30 pA程度	3°