

HS-SPME-GC-QMSと統合定性解析ソフトウェアmsFineAnalysis iQを用いた カカオ分が異なるチョコレートの差異分析

関連製品: 質量分析計 (MS)

はじめに

食品の香気成分は、おいしさに関わる重要な要素として知られており、腐敗臭などのオフフレーバー成分も食品の品質に関わる重要な要素の一つである。これら食品の香気成分の分析には、香気成分の揮発性の高さや多数の成分が複合していることから、ガスクロマトグラフ質量分析計(GC-MS)が多用されている。

GC-MSによる定性分析では、電子イオン化 (Electron Ionization, EI) 法の測定データを用いたライブラリーデータベース (DB) 検索により化合物同定を 行うことが一般的である。ただし、ライブラリースペクトルとの類似度のみを指標に定性解析を行うと、化合物によっては複数の有意な候補が得られ る場合や、誤った候補が同定結果として選択される場合がある。このような場合、光イオン化 (Photoionization, PI) 法をはじめとするソフトイオン化 (SI) 法による分子イオンの確認が有効となる。

弊社では、GC-QMSで測定したEI法, SI法の解析結果を自動で組み合わせる統合定性解析ソフトウェアmsFineAnalysis iQを2021年にリリースした。 msFineAnalysis iQは、EI法で取得したマススペクトルを用いたライブラリーDB検索と、SI法で取得したマススペクトル中の分子イオンの解析を組み合 わせる"統合解析"により確度の高い定性解析結果を得ることができるソフトウェアである。なお、本ソフトウェアの詳細は、MSTips No. 347, 348で紹 介している。本MSTipsでは、msFineAnalysis iQを用いたカカオ分が異なるチョコレートの差異分析結果について報告する。

実験

試料にはチョコレート2種類(カカオ分約70%と約95%)を用い、試料量は5gとした。測定にはGC-QMS (JMS-Q1600GC UltraQuad™ SQ-Zeta, 日本電子 製)を用いた。試料の前処理装置としてオートサンプラーHT2850TのSPMEモード(HTA社製)を使用し、バイアル中のヘッドスペース部分の揮発性成 分を測定対象とした。MSのイオン源にはEI/PI共用イオン源を使用し、イオン化法はEI法および、ソフトイオン化法としてPI法を用いた。それぞれの試 料でEI法はn=3, PI法はn=1の測定を行った。測定で得られたデータはGC-QMS専用統合定性解析ソフトウェアmsFineAnalysis iQ (日本電子製)を用い て解析した。その他の詳細条件はTable 1に示す。

JMS-Q1600GC UltraQuad[™] SQ-Zeta

HT2850T

SPME									
SPME Fiber	DVB/CAR/PDMS 2mm (Merck)								
Sample amount	5 g								
Extraction temp.	60 °C								
Extraction time	30 min								
Desorption time	3 min								
GC									
Column	ZB-WAX (Phenomenex)								
Column	30 m×0.25 mm I.D., df=0.25 μm								
Inlet	300℃, EI=Split 20:1, PI=Splitless								
Oven	40℃ (2 min) →10℃/min→250℃/min (1min)								
Carrier flow	He, 1.0 mL/min (Constant Flow)								
MS									
Ion Source	EI/PI combination ion source								
Ionization mode	EI+ (70 eV, 50 μ A), PI+ (D2 lamp, 8 \sim 10 eV)								
Mass range	<i>m</i> / <i>z</i> 33-500 (Scan mode)								

Table 1 Measurement condition

日本電子株式会社

TICCと差異分析結果

Figure 1にEI法で取得した際のトータルイオンカレントクロマトグラム(TICC)、Figure 2に差異分析結果のボルケーノプロットを示す(青色:カカオ分約 70%,赤色:カカオ分約95%)。ボルケーノプロットにより、各試料における共通成分・差異成分を可視化することができた。カカオ分約70%に特徴的な成分に特徴的な成分は19,共通成分は21成分抽出することができた。各試料の共通成分として、Acetic acidやVanillinといった チョコレートの香気成分として知られる化合物が検出された(Figure 1のTICCに化合物名と構造式を記載)。各試料に特徴的な成分の解析結果は次 項以降に記載する。

Figure 2 Volcano plot of variance component analysis result

各試料に特徴的な成分の統合解析結果

Table 2にカカオ分約70%、Table 3にカカオ分約95%に特徴的だった成分の統合解析結果を記載した(相対強度順)。統合解析結果は、背景色により 定性結果の質を確認することができ、それぞれ以下の意味を示す。

青色:定性確度が高い解析結果(表示している化合物名の可能性大)

黄色:確認が必要な解析結果(表示している化合物ではなく、構造が近い他の化合物の可能性がある)

今回はほとんどの定性結果の背景色が青色となり、確度の高い定性結果が得られていることが分かった。それぞれの試料において、アルデヒド、エステル、カルボン酸や窒素を含むピラジン類など、チョコレートの香気成分由来と考えられる成分が検出された。

各試料において最も相対強度が高い成分(カカオ分約70%: ID 040, カカオ分約95%: ID 032)のマススペクトルをFigure 3に示す。カカオ分約70%で最 も強度が高いID 040は、Propylene Glycolと推定された。Propylene Glycolは香料・着色剤の溶剤や乳化剤として使用される成分である。カカオ分が 低い本試料では、香料の溶剤として使用されていることが示唆される。カカオ分約95%で最も強度が高いID 032は、Pyrazine, tetramethyl-と推定され た。Pyrazine, tetramethyl-はカカオの焙煎により生じる香りであり、カカオ分の高い本試料で強く検出されていることが示唆される。なお、本成分は両 試料間で共通成分のAcetic acidと近い時間で溶出していたが、msFineAnalysis iQのデコンボリューションピーク検出機能によりピーク検出することができ ていた(Figure 4)。

msFineAnalysis iQにより、各試料に特徴的な成分を容易に抽出、定性することが可能であった。

Table 2 Characteristic compounds in Cacao 70%

General					Variance Component			Total Result								
	ID	RT [min]	RI [iu]	Height [%]	Class	Log2(B /A)	p-value	Library Name	CAS#	Lib.	Similarity	Lib. RI [iu]	∆RI [iu]	Formula	DBE	MW
★	040	8.49	1600	100.00	A Only	<-4	0.001	Propylene Glycol	57-55-6	mainlib	921	1600	0	C3 H8 O2	0.0	76
	006	3.08	937	12.76	A > B	-3.78	0.008	Ethanol	64-17-5	replib	699	932	5	C2 H6 O	0.0	46
	012	4.08	1041	4.15	A Only	<-4	0.012	Butanoic acid, ethyl ester	105-54-4	replib	890	1036	5	C6 H12 O2	1.0	116
	003	2.70	895	2.50	A Only	<-4	0.221	Ethane, 1,1-diethoxy-	105-57-7	replib	878	892	3	C6 H14 O2	0.0	118
	007	3.31	962	2.11	A Only	<-4	0.067	Propanoic acid, ethyl ester	105-37-3	replib	883	953	8	C5 H10 O2	1.0	102
	049	11.69	2195	0.82	A > B	-1.01	0.005	Nonanoic acid	112-05-0	replib	892	2170	26	C9 H18 O2	1.0	158
	025	6.71	1340	0.77	A Only	<-4	0.001	Heptanoic acid, ethyl ester	106-30-9	replib	866	1331	9	C9 H18 O2	1.0	158
	041	8.89	1667	0.77	A > B	-1.23	0.010	Butyrolactone	96-48-0	replib	809	1632	35	C4 H6 O2	2.0	86
	008	3.47	979	0.34	A Only	<-4	0.186	n-Propyl acetate	109-60-4	replib	926	973	6	C5 H10 O2	1.0	102
	011	3.89	1022	0.29	A Only	<-4	0.001	α-Pinene	80-56-8	replib	869	1027	5	C10 H16	3.0	136
	021	6.23	1277	0.26	A Only	<-4	0.002	Pyrazine, methyl-	109-08-0	replib	727	1266	11	C5 H6 N2	4.0	94

Table 3 Characteristic compounds in Cacao 95%

	General				Variance Component			Total Result								
	ID	RT [min]	RI [iu]	Height [%]	Class	Log2(B /A)	p-value	Library Name	CAS#	Lib.	Similarity	Lib. RI [iu]	∆RI [iu]	Formula	DBE	MW
\star	032	7.75	1486	9.49	A < B	1.02	0.002	Pyrazine, tetramethyl-	1124-11-4	replib	935	1469	16	C8 H12 N2	4.0	136
	039	8.46	1595	4.65	A < B	2.54	0.040	Propanoic acid, 2-methyl-	79-31-2	mainlib	917	1570	25	C4 H8 O2	1.0	88
	005	2.93	921	4.14	A < B	2.25	0.006	Butanal, 3-methyl-	590-86-3	replib	839	918	3	C5 H10 O	1.0	86
	018	5.66	1208	4.04	A < B	1.05	0.000	1-Butanol, 3-methyl-	123-51-3	replib	896	1209	0	C5 H12 O	0.0	88
	023	6.55	1319	2.21	A < B	1.10	0.000	2-Heptanol	543-49-7	replib	902	1320	1	C7 H16 O	0.0	116
	014	4.86	1121	1.18	A < B	3.33	0.002	2-Butanol, 3-methyl-	598-75-4	replib	797	1094	27	C5 H12 O	0.0	88
	017	5.48	1188	1.12	A < B	1.18	0.000	2-Heptanone	110-43-0	replib	912	1182	6	C7 H14 O	1.0	114
	022	6.40	1299	0.75	A < B	1.17	0.000	Acetoin	513-86-0	mainlib	868	1285	14	C4 H8 O2	1.0	88
												876-				
	004	2.89	917	0.70	A < B	2.92	0.019	di-tert-Butyl dicarbonate	24424-99-5	replib	705	1638	0	C10 H18 O5	2.0	218
	010	3.84	1017	0.60	A < B	1.98	0.029	Isobutyl acetate	110-19-0	replib	878	1012	5	C6 H12 O2	1.0	116
	001	2.17	815	0.53	B Only	>4	0.000	Propanal, 2-methyl-	78-84-2	mainlib	873	819	4	C4 H8 O	1.0	72
	009	3.53	985	0.51	A < B	2.68	0.025	2,3-Butanedione	431-03-8	replib	862	979	6	C4 H6 O2	2.0	86
								Propanoic acid, 2-hydroxy-,								
	026	6.80	1352	0.40	BOnly	>4	0.000	ethyl ester	97-64-3	replib	855	1347	5	C5 H10 O3	1.0	118
	019	5.92	1240	0.37	BOnly	>4	0.186	trans-β-Ocimene	3779-61-1	replib	812	1250	10	C10 H16	3.0	136
	016	5.30	1168	0.35	B Only	>4	0.001	β-Myrcene	123-35-3	replib	851	1161	7	C10 H16	3.0	136
	027	6.85	1359	0.35	B Only	>4	0.002	Pyrazine, 2,3-dimethyl-	5910-89-4	replib	883	1344	14	C6 H8 N2	4.0	108
	042	8.98	1681	0.35	B Only	>4	0.000	Acetophenone	98-86-2	replib	899	1647	35	C8 H8 O	5.0	120
	033	7.96	1518	0.29	B Only	>4	0.000	2-Nonanol	628-99-9	replib	872	1521	3	C9 H20 O	0.0	144
								2(3H)-Furanone, dihydro-3-								
	048	11.08	2070	0.25	BOnly	>4	0.186	hydroxy-4,4-dimethyl-, (±)-	79-50-5	replib	867	2070	0	C6 H10 O3	2.0	130

Figure 4 Deconvolution chromatogram of ID 032

まとめ

東京事務所

SI営業本部

本報告では、msFineAnalysis iQの差異分析機能を用いたカカオ分の異なるチョコレートの差異分析例について紹介した。本機能により、サンプル間の差 異成分と共通成分を容易に抽出することができ、各成分の定性も容易に行うことが可能であった。msFineAnalysis iQを用いることで、GC-QMSを用いた定 性解析の定性確度向上や効率的な解析作業が期待される。

> Copyright © 2023 JEOL Ltd. このカタログに掲載した商品は、外国為替及び外国貿易法の安全輸出管理の規制品に該当する場合がありますので、輸出するとき、または日本国外に持ち出すときは当社までお問い合わせください。

本社・昭島製作所 〒196-8558 東京都昭島市武蔵野3-1-2 TEL: (042) 543-1111(大代表) FAX: (042) 546-3353 www.jeol.co.jp ISO 9001 · ISO 14001 認証取得

〒100-0004 東京都千代田区大手町2丁目1番1号 大手町野村ビル **業務統括センター** TEL:03-6262-3564 FAX:03-6262-3569 **デマンド推進本部** TEL:03-6262-3560 FAX:03-6262-3577 SI販促室 TEL:03-6262-3567 FAX:03-6262-3577 セミコンダクタ・ソリューションセールス部 TEL:03-6262-3567 産業機器営業部 TEL:03-6262-3570 MEソリューション坂位室 TEL:03-6262-3571 SE事業戦略本部 SE営業グループ TEL:04-2542-2383 (本社・昭高製作所)