

JMS-S3000 Application Data

JMS-S3000"SpiralTOF" Negative モードを用いた マウス脳組織切片上の脂質のマスイメージング

生体内で情報伝達やエネルギー貯蔵などの様々な役割を果たす脂質に関して、その組成や構造情報だけでなく、生体内での分布を知ることは、生化学上重要なことと言える. 脂質は、構造により極性が異なり、 Positive と Negative モードでそれぞれ測定できる種類が異なる. マウス脳組織切片の脂質分布を JMS-S3000 SpiralTOF Positive モードで測定した例では、リン脂質の1種であるフォスファチジルコリンが主 に観測された[1]、今回は、Negative モードにてマウスの脳組織切片上の脂質のマスイメージング測定を行った.

ITO スライドガラス上に配置したマウス脳組織切片(図 1)に 9-Aminoacridine を噴霧したのち, Negative モー ドでマスイメージング測定を行った. 6.3 × 9.24 mm の測定範囲を, 60 µm 四方のピクセルに分割し, 各ピクセ ルで 500 shots ずつ積算し, 計 16170 のマススペクトルを測定した. 測定した全マススペクトルを平均したマス スペクトルを図 2 に示す. *m*/z 888.6 に Sulfatide C24:1 の[M - H] と推定されるシグナルが強く観測されている. このイオンの構造解析を行うため, TOF-TOF モードでプロダクトイオンスペクトルの測定を行った(図 3). 観測さ れたピークは, 図 4 のようにアサインすることができ, 確かに Sulfatide C24:1 の構造を反映している[2].

図 2 の平均したマススペクトルで観測された m/z 888.6 を Sulfatide C24:1 の[M - H] ⁻ の計算質量を用い て m/z 軸の 1 点補正を行った. こうして得られた精密質量から, いくつかのピークについて同定した結果を表 1 に示す. それぞれの計算質量と精密質量の誤差は 10 ppm 以内であった.

図 5 に表 1 で同定したピークのマスイメージを示す. *m/z* 885.5 である Phosphatidylinositol (PI) (38:4)は, 組織切片全体に分布していることがマスイメージから分かる. 対して, スルファチドは, 組織切片の特定部位に 局在している.

以上のように、Negative モードでのマスイメージング測定により、Positive モードとは異なる脂質の分布情報 を得ることができ、両者の組み合わせにより解析を行うことは非常に有用である. 更に TOF-TOF オプションを 使用することで、切片上の物質の同定が可能となり、それを内標とすることで精密質量測定が可能となる.

【謝辞】

本分析は、大阪大学 大学院理学研究科 附属基礎理学プロジェクト研究センター 学際理学部門との共同 研究の成果です. 組織切片は、大阪大学 大学院工学研究科 環境・エネルギー工学専攻 粟津研究室より提 供いただきました.

Fig.1 A mouse brain tissue on ITO coated glass Plate. a) before matrix coating, b) after matrix coating

Fig.3 Product ion mass spectrum of the ions at m/z 888.6.

Fig.4 Structure and peak assignments of Sulfatide C24:1.

Number	Compound	Formula	m/z value (Observed)	m/z value (Calculated)	Error [mu]	Error [ppm]
1	C16 Sulfatide	C ₄₀ H ₇₆ NO ₁₁ S	778.5070	778.5145	-7.5	-9.6
2	C18 Sulfatide	C ₄₂ H ₈₀ NO ₁₁ S	806.5426	806.5458	-3.2	-3.9
3	C18-OH Sulfatide	C ₄₂ H ₈₀ NO ₁₂ S	822.5398	822.5407	-0.9	-1.1
4	C20 Sulfatide	C ₄₄ H ₈₄ NO ₁₁ S	834.5718	834.5771	-5.3	-6.3
5	C20-OH Sulfatide	C ₄₄ H ₈₄ NO ₁₂ S	850.5694	850.5720	-2.6	-3.0
6	C22 Sulfatide	C ₄₆ H ₈₈ NO ₁₁ S	862.6037	862.6084	-4.7	-5.4
7	C22-OH Sulfatide	C ₄₆ H ₈₈ NO ₁₂ S	878.6003	878.6033	-3.0	-3.4
8	PI(38:4)	C ₄₇ H ₈₂ O ₁₃ P	885.5466	885.5499	-3.2	-3.7
9	C24:1 Sulfatide	C ₄₈ H ₉₀ NO ₁₁ S	888.6240	888.6240	—	—
10	C24:1-OH Sulfatide	C ₄₈ H ₉₀ NO ₁₂ S	904.6179	904.6189	-1.0	-1.1
11	C24-OH Sulfatide	C ₄₈ H ₉₂ NO ₁₂ S	906.6308	906.6346	-3.8	-4.2
12	C26:1 Sufatide	C ₅₀ H ₉₄ NO ₁₁ S	916.6529	916.6553	-2.4	-2.6

Fig.1 Differences between calculated and observed *m*/*z* values for peaks observed in the averaged mass spectra after mass-correction using the peak confirmed as Sulfatide C24:1.

Fig.5 Mass Images of compounds from mouse brain tissue.

- [1] T. Satoh, A. Kubo, S. Shimma, M. Toyoda, M, Mass Spectrometry 1 (2012) A0013.
- [2] S. Shimma, A. Kubo, T. Satoh, M. Toyoda, PLoS One 7 (2012) e37107