Close Btn

Select Your Regional site

Close

振り子解

振り子解

Poendel Loesung

[目次:理論(電子の散乱/回折/結像)]

ひとつの回折波を強く励起すると消衰距離の半分の厚さで(~数10nm)、入射波のエネルギーは完全に回折波に移る。さらに同じ厚さだけ進むと回折波のエネルギーは再び入射波に完全に戻る。このように波のエネルギーが入射波と回折波の間で行ったり来たりする現象を動力学的回折の振り子解(ペンデルレーズンク)という。したがって電子回折では回折波の強度は回折波の散乱振幅に比例せず、厚さによって強度は周期的に変化する。

If two-beam dynamical diffraction is assumed, when one diffracted wave is strongly excited, the energy of the incident wave is completely transferred to the diffracted wave at a thickness of half the extinction distance. When the wave travels another half the extinction distance, the energy of the diffracted wave is completely transferred to the incident wave again. This phenomenon is called "Poendel Loesung." Thus in electron diffraction, the intensity of the diffracted wave is not proportional to the scattering amplitude of the reflection, but periodically changes with specimen thickness.

関連用語から探す